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ABSTRACT

This paper investigates the vane-loaded ladder slow-wave cir-

cuit. This circuit, derived from the interdigital line, is examined as

a possible alternative to circuits currently used in crossed-field

amplifiers (CFA's). Its configuration is designed to possess wideband

dispersion and to allow access to the fundamental forward-wave space

harmonic through altered electric field distributions.

The analytical results show that the circuit possesses intrinsic

shortcomings which prevent full realization of the desired features.

While it does preserve the wideband dispersion of the interdigital line,

it also introduces some undesirable characteristics. Furthermore, the

new electric field distributions contribute to the desired impedance

behavior only under limited circumstances. In general, the impedance

characteristics which inhibit the interdigital line as a forward-wave

circuit are present in the new circuit to the same degree. It is con-

cluded that typical CFA circuits, such as the stub-supported meander,

line, are more advantageous.
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I. INTRODUCTION

The interdigital slow-wave circuit was first analyzed by

Fletcher' in 1952. It has since been used extensively for microwave

generation, particularly in M-type backward-wave oscillators (M-BWO's).

It is well suited for use in M-BWO's because of the large impedance

bandwidth of the primary backward-wave space harmonic. In a crossed-

field, forward-wave amplifier, however, the interdigital line would be

less desirable. Because of the disparity in the beam coupling imped-

ances for the primary forward- and backward-wave space harmonics, the

gain of the amplifier would be less than a comparable backward-wave

amplifier and preventing oscillation would be difficult. The problem of

unwanted oscillation can be eased by interacting with other forward-wave

space harmonics, but this reduces the beam coupling impedance and also

entails a reduction in bandwidth. As a result, in M-type amplifiers,

the interdigital line is disregarded in favor of circuits such as the

stub-supported meander line, for which the impedance behavior, among

other factors, is more favorable. The price paid for this is the

narrow-band dispersion of the stub-supported meander line's fundamental

forward-wave space harmonic.

This report investigates a slow-wave circuit which may serve as an

alternative to circuits currently used in crossed-field amplifiers

(CFA's). It is called the vane-loaded ladder. This circuit was origi-

nally conceived as a consolidation of two adjacent interdigital lines.

Such a configuration is designed to preserve the wideband dispersion of

the interdigital line while increasing its potential as a forward-wave



circuit by altering the impedance behavior of the primary space har-

monies.

Since the analysis of the new circuit relies heavily on an under-

standing of the interdigital line, the report begins in Chapter II with

a review of the interdigital line. The report then proceeds to Chapter

III, where the analysis of the vane-loaded ladder is given. The proces-

sion of this chapter closely parallels that of Chapter II. In Chapter

IV, the results of the previous chapters are discussed and the new

circuit is evaluated. Conclusions are then presented in Criapter V.

-2-



II. REVIEW OF THE INTERDIGITAL SLOW-WAVE CIRCUIT

Before examining the vane-loaded ladder, it is useful to review

the analysis of the interdigital line as first presented by Fletcher.,

This serves two purposes. First, it provides an introduction to the

analysis by way of an easy-to-follow example. Second, it exposes the

deficiencies of the interdigital line which provided the motivation for

investigating a new circuit.

A. Circuit Illustration and Description

The interdigltal line is illustrated in Fig. 1. It is a planar

circuit composed of two sets of interlaced, straight fingers of length

2h which originate at their respective sidewalls and extend almost the

entire width of the circuit to the opposite sidewall. The pitch, £, is

the center-to-center distance between adjacent fingers of opposite type,

and the period, L = 2Z, is the similarly defined distance between

adjacent fingers of the same type. The circuit may also be loaded by a

backwall and/or sole as shown. These are both attached to the sidewalls

and are considered to be at ground potential (see below).

B. Dispersion Characteristic

As Ash and Studd 3 point out, Fletcher's method of anlysis' employs

two distinct approximations. First, it is assumed that the fields on

the circuit can be approximated by TEM waves which travel between the

fingers in the direction of the fingers (±y direction in Fig. 1). These

waves travel with the free-space speed of light, c, and wave number,

k = w/c. In the absence of an electric field component in the direction

-3-
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of the fingers, curl E is zero in the plane transverse to the fingers,

and therefore a voltage can be defined in that plane which satisfies the

two-dimensional Laplace equation.

2+ - 0

6x2 6z2

With the introduction of an impedance function, the corresponding cur-

rent can also be expressed. The presence of such voltage and current

allows the second approximation to be made, namely that Kirchoff's

equations are satisfied on the circuit rather than Maxwell's equa-

tions. To satisfy Maxwell's equations on the periodic circuit, electric

and magnetic fields composed of infinite sums of space harmonics would

be required. The phase shift per pitch for the nth space harmonic, 0n,

would then be

an L

O = = n 0+ ni (2)n n 2

where

an = + 27n/L = propagation constant for (3)
the nth space harmonic

Using Kirchoff's equations, however, voltage and current composed of

just two space harmonics are sufficient to satisfy the boundary condi-

tions (because of the form of the solution to the two-dimensional

Laplace equation, space harmonics whose propagation constants differ by

-5-



integral multiples of 2% are indistinguishable from one another). Thus,

the voltage at a given position on the mth finger is given by

vm W = [A e- j m e + B eim(e+n)] e

= [A1 sin + A2 cos 0] e-jme + [A3 sin + A 4 cos 0] e-Jm( 8 )

(4)

where

= :xlc (5)

The latter form of the voltage reveals an important aspect of the analy-

sis, namely the use of symmetric (cosine, which is symmetric around the

origin) and antisymmetric (sine, which is antisymmetric about the

origin) standing waves to satisfy the boundary conditions.

In order to express the current associated with a given voltage,

Fletcher' Introduced the admittance function Y(8). This function is

defined as the ratio of the current to the voltage at any point on the

circuit for a given value of 8. Walling,2  who corrected Fletcher's

original expression,' gives this admittance function as

Y(O) : Y 0 !( /q) sin (4/2) + 2(1 - a) sin (e/2)[S(wb, a) + S(w, a)]l

(6)

where

Yo admittance of free space (7)

a - q/p (8)

- 6-



a - (e/2) + nw (9)

and

S(w,a) = (-i)n coth [2wo/1] sin [(1 - a)o] sin [au] (10)
[(0 - ()10 a]

The summation in Eq. 10 Is from n = -- to n = +-. This admittance

function, which is plotted in Fig. 2, has several important features

which merit special attention. First, it is independent of position.

The admittance depends only on e, the circuit dimensions, and the back-

wall and sole spacings wb and w., respectively. Because it is a func-

tion of e, it is different for each of the space harmonics which

comprise the voltage. Second, the admittance function contains all

information regarding the behavior of the fields in the direction per-

pendicular to the plane of the circuit (more precisely, this information

is wholly contained in the function S). This is beneficial because it

reduces the analysis to a two-dimensional one. Finally, the function S

is composed (ideally) of an infinite sum of space harmonics, thereby

providing the link between the two-harmonic approximation and the

infinite, exact solution.

The general expression for the current is

() - JYCe) v- (11)

which when applied to each space harmonic of the voltage gives

-7-
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Im(¢) m JY(8)[A1 cos * - A2 sin 0] e
-jm8

+ JY(e + f)[A 3 cos 0 - A4 sin 01 e
- Jm( 8 +W) (12)

Referring to Fig. I and defining

o " wh/c (13)

the boundary conditions are given by

m m +1
V 0o( ) V 0 (+00) - 0 (14a)

m m +1
I °(+o ) 1 0 ( _) = 0 (14b)

These specify that the current must be zero wherever a finger terminates

in free space, and the voltage must be zero wherever a finger contacts a

ground plane. As mentioned previously, the sidewalls, backwall, and

sole are assumed to be at ground potential. Substituting Eqs. 4 and 12

into Eqs. 14 produces the linear system

a = 0 (15)

where

a AA, A, A 4]T (16)

r - -1 (17)

-9-



and A is given by Eq. 18.

I m m
-sin +Co -r 0sin +r 0Cos

+sin °  I +cos or sin +r Cos
i i

-YO )oI m0
+Y() c o Y() sin 0oi +r °Y(e+iT) cos 00 -r Y(e+r) sin 0

L + m +1
+Y(e) cos €oI +Y(e) sin 0o !+r o Y(8+) cos * 1+r 0 Y(e+w) sin 40

0 0 O* -

(18)

The dispersion characteristic states the conditions under which Eq. 15

Is satisfied for arbitrary a. These conditions are given by det(M) -

0. However, the final results are more easily obtained and more readily

understood if M is first transformed into M, using Gaussian elimination

(which leaves the determinant unchanged), and the dispersion is then

obtained from det(M') 0 0. After some rearranging, this approach yields

I I I o
+2 sin o 0 0 -2r cos o

0I I 0
1 m

+2Y(e) cos o 0 0 l-2r °Y(e+i) sin

01 m

0 +2 cos o2r sin 0
0 0

m 0
0 1+2Y(e) sin o 0-2r °Y(e+7) cos I 0

(19)

- 10 -



and subsequently,

det(M') - det(M) = l6as = 0 (20)

where

22

a = Y(6) cos 2o - Y(e + 7) sin 2  (21a)

= Y(e) sin 2 00 - Y(e + i) cos 2  o (21b)

Equation 20 reveals two "independent" circuit modes whose dispersion

characteristics are given by

1. a = 0 or tan2 00 M Y(e)/Y(e + 7) (22a)

A - A ' 0 (22b)
2 3

m
A4 - +r 0 tan €o A (22c)

vm(€ - A sin * e- j m  + A4 cos * e-jm(e + )

A LSin e- j M  + tan 4o cos * e J (22d)

m-ime j(B

I m (0) - JY(B)A1 cos € e - JY(O + 7)A4 sin €e*

- jA1LY(e) cos e-j m  - Y(e + u)r 0 tan 0 sin * e (22e)

- 11 -



2. 8 - 0 or cot2 o f Y(e)/Y(e + 1) (23a)

A, - A4 - 0 (23b)

m
A - +r cot 0o A2  (23c)

V m() = A2 cos * e- j me + A3 sin 0 e j m(e + )

- A2 [Cos p e - j m e + r mo cot €o sin -ejm(e+W)  (23d)

Im (0) - -jY(e)A2 sin € e-jme + jY(e + 7)A3 cos 0 e-jm ( + )

- jA2 [-Y(e) sin € e - j me + Y(e + w)r o cot cos 0 eim(e+7)

(23e)

The word independent is in quotes here because Eqs. 22 and 23 do not

describe two distinct circuit modes, rather they describe the space

harmonic structure of a single mode (see Chapter IV). The first pass-

band of this mode is plotted in Fig. 3. Of particular interest are the

primary space harmonics, i.e., the forward- and backward-wave components

in the domain 0 < 8/w < 1.

- 12-
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C. Beam Coupling Impedance

The beam coupling impedance for the nth space harmonic as a func-

tion of position on the circuit is given by Pierce 4 as

JE 2 2 EE*IEn 12  2EnE n

K (6,0) - = n(24)
26 P 2(e + ni)2 v W
n ta g 3

where

En = z-directed electric field at the position of the beam for

the nth space harmonic

an  = (6 + n7)/t = propagation constant for the nth space harmonic

vg = (magnitude of) group velocity for all space harmonics

Ws  = total stored energy per pitch

Pta = vgWs = time-averaged power flow on the circuit

and the star (*) denotes complex conjugation. The leading factor of

one-half arises from the time averaging oflEn1 2 .  When averaged over a

strip beam of width 2b, Eq. 24 becomes

K (e) = 1 K (6,) d4 (25)n 2b - b n

where b = wb/c. It is assumed that the beam is positioned at x = -d/2,

i.e., just grazing the circuit at the interface between Regions I and 2

(see Fig. 1(b)).

- 14 -



1. Group Velocity Vg

The group velocity vg, whose magnitude Is of course the same for

all space harmonics, is given by

v dw dw dO (26)
g s d

Since

(0 + n) (27)
n 9.

then,

dO/dB =L. (28)

The relationship between w and 0 is obtained from the dispersion rela-

tion as given by Eq. 22a. Using this equation and the identity

d1tan -I  ul 1 du (29)

dx 2 dx

gives

dw = (c/2h)H(8) (30)

where

- 15 -



H(e) = [Y(e + 7)/Y(e)]11 2 Y'(e) - [Y(e)/Y(e iT)]1/ 2 Y'(e + ) (31)[Y(e) + Y(e + 1T)J

and a prime (') denotes differentiation with respect to 8. Thus,

v = (ic/2h) H(e) (32)g

This result is easily derived or can be obtained from Walling's Eq. 16.2

2. Stored Energy Per Pitch W

The stored energy per pitch is determined by dividing the stored

energy between adjacent fingers by the circuit pitch, Z. The stored

energy between adjacent fingers is given by the total power flow along a

finger multiplied by the time it takes to traverse a finger, which can

be expressed as the finger length, 2h, divided by the speed of light,

c. Thus, for TEM waves,

Ws = 2hP ta/c (33)

where

Pta = time-averaged power flow along the fingers

- Re[VI1]/2
* /2

= Re[V e1e ]/2 + Re[V +*e+ ]/2

. Pe +p (34)

- 16 -



The contributions from the e and 6 + T components of V and I can be

summed separately, since these harmonics are uncoupled from one another.

Using Eqs. 22a, 22d, and 22e in Eq. 34 yields

p2

Pe = P = A Y(e)[l - 1]/8 (35)
0 +1T I

At this point, it must be recognized that the first term in the brackets

in Eq. 35 is the TEM forward-wave contribution to the power flow, and

the second term is the corresponding backward-wave contribution. To

determine the total stored energy, the magnitude of the power flow due

to each component must be summed. Therefore,

Pe =P A 2Y()/4 (36)

and the final result is

W Y(6) A2 (37)
S lc

3. Electric Field Distribution E Enn

The electric field distribution, EnE n , is determined by following

the procedure outlined by Fletcher.' To begin, it is assumed that the

electric field between the fingers in Region 1 (see Fig. l(b)) is uni-

form. The field can then be expressed as the voltage difference between

two adjacent fingers divided by the distance q between them. Over one

period of the circuit, this is given by

- 17 -



(Vm+ 1 - vm)/q, mi + (p/2) < z < (m + 1)i - (p/2)

(Vm - Vm-13/q, (m - +)9 + (p/2) < z < mi - (p/2 )

El 0, (m - 1)z < z < (m - 1)i + (p12) (38)

0, mi - (p/2) < z < mi + (p/2)

0, (m + 1)t - (p12) < z < (m + 1)t

Because Eqs. 22d and 23d describe the same circuit mode, either can be

used here to determine EI . Equation 22d is substituted into Eq. 38 to

give

E esin e-j[m+(1/2)]O + cos -j[m+(1/2)][O+7]

mt + (p/2) < z < (m + I)9 - (p/2)

E sin 4 e j[m(1/2)] + E + cos p e

E= (m - I)9 + (p/2) < z < mZ - (p/2) (39)

0, (m - 1)k < z < (m - I)k + (p/2 )

0, mt - (p/2) < z < mi + (p/2)

0, (m + 1)k - (p/2) < z < (m + 1)k

- 18 -



where

E -1
Ee - -J2A1 q sin (e/2) (40a)

e+r = -J2A 1q tan 4o cos (e12) (4Ob)

The electric fields In Regions 2 and 3 are represented by Fourier expan-

sions over one period, L - 2Z, which satisfy the boundary conditions

imposed by the sole and backwall, respectively. These are given by

E 2)3 En
E2,3 = n

[F sin 0 + G Cos snh[(e + n)(W s,b 
± x)/21] e

-j(e+ n )z/2i

n n sinh [(e + nir)w ,/2Js 12

where again the summation is from n = -- to n - + -. It is also assumed

that Region 1 is infinitesimally thin, so that at x - 0,

(Ex2) = (E 3 )x.O = E l  (42)

Substituting Eqs. 39 and 41 into Eq. 42, multiplying both sides of the
+ j(e+nn)z/21

resulting equation by e n, and integrating over one period

gives

-19 -



0 n odd

F -, m 1  (143a)
F n Eeqn/2 sin [(0 + n r)q/2£1]

£ [(0 + n7)q/21] n - even

m +[(n-I)/2]
Ee+ _ _qr 0 sin [(e + n)q/2t][(e + nff)q/2k] n odd

Gn  (43D)

Sn 0 n even

where the orthogonality of sine and cosine has been used. Using Eqs. 43

in Eq. 41 and taking x = 0 yields

olGn cos € e- j ( e+ n )z /2 1 d

Gn  n odd

E = (ER, ) = (44)
En 2 3 )x=0  c

sn -j (0+nl)z/2i

IF sin e 
n even

The space harmonics of interest are those in the domains 0 < /i < 1

("primary domain") and 1 < 8/1 < 2 ("secondary domain"). These are the

n = 0 and n = +1 forward-wave harmonics and the m - -1 and m = -2 back-

ward-wave harmonics. The electric field distributions for these com-

ponents are given by
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22
1 2 sIn2 [eg/2ZI 2

E* = 4A si

E 2 E (8/2) [eq/2£]2  sin € (45a)

o A2  [2 2
, 1A 2 2 sl2( + ir)g12£] 2

E+E = - tan 2o cos (8/2) (e + )q/2] Cos 2 (45b)
+1 +1 12 0 [(6e tq/i]

E E * 4A2  2 2 sin 2 [(7 - O)q/2£] 2
-1- 2 tan 2 4° cos (e/2)2 cos 2 4 (45c)

[(n - O)q/2£) 2

2  e4A s /2) s i n2 [(2n - e)q/2Z] sin2  (45d)

2 -2 z2 [(2v - e)q/2I]2  4,

Those components which possess a sin 2 4 dependence have been dubbed

"edge" modes. Their regions of greatest field intensity, and therefore

of greatest coupling, are at the edges of the circuit, i.e., at the ends

2
of the fingers. Similarly, those which possess a cos 4, dependence have

been dubbed "center" modes.

4. Final Expressions for Beam Coupling Impedance

Using Eqs. 32, 37, and 45 along with the identities

1 "'b sin 2 , 1 sin (2 b )de : $(46)
2€b b cos2  4 d Tb 

( 6

in Eq. 25 yields

1 * 2 i= 0, +1,-i, -2 (47)
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1 1 l sin (2b)
0,-1 -2,+1 + 4 b (48)

K2 - 4 sin 2 (0/2) sin 2 [eq/2t] (49a)
0 2 H(e)Y(e) (eq/21]2

K2  4 tan 2 €o 2 sin 2 [(6 + f)q/2] (4+= + 2cos (0/2) ('49b)+1 (0 + it)2 H(O)Y(O) [(O + T)q/21] 2

2 4 tan2 €o 2 sin 2[Or - 0)q/2t]K - cos (0/2) 2 (49c)
- H(e)Y(e) [( - 0)q/2k]

K2 = 4 sin 2 (/2) sin 2 [(27 - G)q/21] (49d)
-2 (21T - 6)2 H(O)Y(e) [(27 - O)q/21] 2

In these expressions, KI represents the effect of the electric field

distribution on the magnitude of the beam coupling impedance. It is the

end result of the integration of the € dependence of the electric field

over the total beamwidth. K2 is the composite of all other factors.

These beam coupling impedances are ploted in Figs. 4 and 5 for b - Oo'

i.e., for a beam which spans the entire width of the circuit. A

detailed discussion of these results is reserved until Chapter IV.
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III. ANALYSIS OF THE VANE-LOADED LADDER SLOW-WAVE CIRCUIT

A close examination of the results of the previous chapter indi-

cates that a useful amplifier circuit would be one which provides the

instantaneous bandwidth of the interdigital line, while reversing the

impedance behavior of the primary space harmonies (this will be dis-

cussed in detail in the following chapter). The vane-loaded ladder

circuit presented in this chapter is a circuit designed to serve in this

capacity.

A. Circuit Illustration and Description

The circuit under consideration is shown in Fig. 6. It is also a

planar circuit composed of two types of circuit elements which alternate

one after the other in the direction of propagation Z. As before, the

pitch, Z, is the center-to-center distance between adjacent fingers of

opposite type, and the period, L = 2t, is the similarly defined distance

between adjacent fingers of the same type. Elements of the first type

are fingers of length 4h which extend away from the centerline on both

sides. These elements are attached to the sidewalls at both ends and

are not connected to the backwall at the centerline. Elements of the

second type are assumed to have the same length, but are connected to

the backwall at the centerline and are not attached to the sidewalls.

For convenience, elements of the first type are called rungs (because of

their likeness to the rungs of a ladder) and elements of the second type

are called vanes; hence, the name vane-loaded ladder. As with the

interdigital line, the circuit may also be loaded by the presence of a

- 29 -
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(b) Side view.

Fig. 6. Vane-loaded ladder slow-wave circuit.
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sole which is at ground potential along with the backwall and side-

walls. In a traveling-wave tube, a strip beam of width 2b would be

injected between the circuit and the sole.

The conception of the circuit is more easily understood if it is

viewed as a joining of two adjacent interdigital lines (without a "side-

wall" down the center), as shown in Fig. 7. The purpose of such a

joining is to propagate interdigital line modes to either side of the

centerline. This preserves the interdigital line dispersion, while

reversing the electric field distributions (from edge mode to center

mode and vice versa) for the primary space harmonics. The latter fea-

ture is designed to alter the impedance behavior through its impact on

the field distribution factor K

B. Dispersion Characteristics

The technique used here to derive the dispersion characteristic

for the vane-loaded ladder line is nearly identical to that employed for

the interdigital line. The difference between the two is not in the

fundamentals of the formulation, but in how it is applied. In the

interdigital line analysis, the entire circuit was considered as a

single region, i.e., just one voltage was defined over the entire length

of the fingers. This was appropriate since it provided four unknowns,

AI-A4, for which to solve using the four boundary conditions. The vane-

loaded ladder, however, imposes an additional constraint: the voltage

must go to zero at the center of the vanes where they connect to the

backwall. Treating this circuit as a single region would yield an

overdetermined system of five boundary conditions for only four

- 31 -
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Fig. 7. Vane-loaded ladder as a consolidation of
two interdigital slow-wave circuits.
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unknowns. To avoid this, the circuit is bisected at the centerline into

two equal regions. This is shown in Fig. 8. Each region has its own

voltage and admittance function, both of which are defined to exist only

in that region. This gives a total of eight unknowns, leaving a need

for three additional boundary conditions. These additional conditions

are obtained by requiring that the voltage and current on the rungs and

the voltage on the vanes be continuous across the centerline. It is not

necessary to force current continuity on the vanes, since any disparity

at this point would be considered as current flowing into the backwall.

The voltage in a given region is naturally a function of position,

and normally the position in either region is referenced to the same

origin or centerline. If this is done here, however, the dispersion

assumes a form from which the circuit modes are nearly impossible to

distinguish. To eliminate this problem, the positional dependence of

the circuit quantities is referenced to the centerline of their respec-

tive regions rather than the centerline of the circuit. This causes no

loss of generality. In fact, it can be shown using simple trigonometric

identities that the frame of reference change is Just absorbed into the

voltage coefficients B1-B8 . Referencing Fig. 8 and defining,

€o = wh/c (50)

001 -o0 coordinate of Region I centerline (51)

o2= " = coordinate of Region II centerline (52)
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the voltages in each region at a given position on the mth finger are

given by

V4)- [B, sin + B2 os* eljme

+ [B3 sin I + B4 cos WICB+W) (53a)

Vm(2 )= B5 sin ¢2 + B6 Cos 2ejm

+ [B7 sin 02 + B8 cos ¢21 eim(e+n) (53b)

where

0I . - =, + ,o (54a)

2 - € - o2 = 0 - €o (54b)

The currents are obtained using Eq. 11 and are given by

IT(Oi - JY(e) [ cos - C2 sin e

+ jY(8 + ) [C 3 cos 01 - C4 sin ,] e-Jm(e+n) (55a)

I 2(O JY(e) C5 cos - C sin $2] eime

+ jY(O + 7) C7 os - C8 sin $2] e

- 35 -



For simplicity, it has been assumed that the circuit dimensions and wall

spacings are identical in the two regions, making the corresponding

admittance functions indistinguishable from one another.

Assuming the mo finger is a rung, the boundary conditions are

given by

m

1. V1
0 (0I = -40) 0 0 (56a)

m

2. V2 
0 (2 - +o 0 0 (56b)

m +1
3. V 1 € = + 0)= 0 (56c)

m +1
4. V 2

0  (02 = -€oJ = 0 (56d)

m +1
5. 110 0 = -o ) = 0 (56e)

m +1
6. 120 0 (2 - +o = 0 (56f)

m m
7. V1° (4I 1 +.o) - V20 (02 - - 0 (56g)

m m

8. 10 (0I = 0 ) - 120 (2 -0o) = 0 (56h)

As before, these specify that the current must be zero wherever a finger

terminates in free space, and the voltage must be zero wherever a finger

contacts a ground plane. The last three are those which result from the

continuity requirements (rather than explicitly forcing voltage

- 36 -



continuity where the vanes meet the backwall, it is done implicitly by

setting both voltages to the same value, namely, zero. Substituting

Eqs. 53 and 55 into Eqs. 56 yields the linear system,

b = 0(57)

where

i[BI p B2, B3, B4 , B5, B6, B7 , BS]T (58)

r = -1 (59)

and M is given by Eq. 60.
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Satisfying Eq. 57 for arbitrary b requires that det 0) = 0. Similar to

the technique used in Chapter II, M is first reduced to a fourth-order

matrix A' using Gaussian elimination, and the dispersion is then ob-

tained from

det(M') = det(M) = 8aB[in2¢ o- cos2o][Y(6) + Y(Ve + )] - 0 (61)

where

= Y(O) cos 0o - Y(e + w) tan €o sin 4o (62)

S = Y(e) sin o - Y(e + f) tan € cos € (63)

This dispersion characteristic reveals two (truly) independent circuit

modes. The first mode is a set of resonances which occur at €o = n /4,

n = 0, 1, 2, 3, .... These are the frequencies at which the ladder

resonates, i.e., at which the total length of the rungs is equal to an

integral number of half-wavelengths. Equation 61 shows only the

4) . 7/4 ± n7/2 resonances because the €o = nrT/2 resonances are lost in

the reduction of the original, eighth-order system. The second indepen-

dent mode is exactly the interdigital line mode discussed in the previ-

ous chapter. As before, both the a - 0 and 8 w 0 modes of Eq. 61 are

actually describing the space harmonic structure of a single circuit

mode. They are given by
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ta2o Y (O8)

I.a =0 or tan Y( + i) (64a)

B2 = B3 - B6 = B7 - 0 (64b)

B4 =B 8 = r tan 0 B1 (64c)

B =5 -B1 (64d)

( = B sin 0 e-jM  m 0 tan e-Jm(e+n) (64e)VI1 1 13 1 0 a ocs€ 6e

I I  -- JBI[Y(e) cos €I e-ireS

mm

- e + )r tan si eoms 2re (64f)

V'(O B s~in e-o

+r = 0Btan 0 0 cos 2 e-m(64g)

I M()-j me2 2 1L-Y(e) Co *2e

Y(e + W)r o tan €o sin ¢2 eiin(0+7) (64h)
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2. 8 0 0 or cotY2 0 Y(e) (65a)o Y(e + W)

Bi = B4 = B5 = B8 = 0 (65b)

m
B3 = -B7 = 0 cot ¢o B2 (65c)

B6 = B2  (65d)

VM(O I ) = B2  os €I e-jme + r, 0 cot €o sin 0 e 6 (65e)1 1 2eIl

mT(¢ ) = e) sin ¢I ejm

r -jmi m)
1 B-[Y(e)

+ Y(e + )r o0 cot 0 cos e (65f)

= BLOS - r o cot 0o sin *2 e j (65g)

1 (02 = jB[Y(e) sin ej

m -jmf+

- Y(8+ 7)r o cot o cos *2 e (65h)

The first passband of the vane-loaded ladder is shown in Fig. 9. It is

identical to that of the interdigital line except for the ladder reso-

nance at midband.
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C. Beam Coupling Impedance

The beam coupling impedance is repeated here as Eq. 66 for conven-

ience.

+b

K (6) = 1 f K (e, ) do (66)n2€b -Ob n '

In this expression,

EE

K 1 n n (67)
n 2 (67~ W

n gs

and all other quantities are defined as before. It is again assumed

that the beam just grazes the circuit it the interface between Regions 1

and 2 (see Fig. 6(b)). Like the dispersion characteristic determined in

Section B, the coupling impedance is derived here exactly as it is done

in Chapter II. Some very minor differences arise because of the altered

electric field distribution.

1. Group Velocity vg

Because the dispersion characteristic for the propagating mode is

unchanged from Chapter II, the group velocity is also unchanged. It is

given by

dw d6 d Hcv d d i H(e) (68)g dB do do 2h

where H(O) is given by Eq. 31.
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2. Stored Energy Per Pitch

The total stored energy per pitch, Ws, for the vane-loaded ladder

is the sum of the stored energies in each region. A comparison of Eqs.

64 and 22 shows the voltage distributions in each region are identical

to that of the interdigital line, with the inconsequential exception

that the sin * component of V2 is negated, as it must be for continuity

across the centerline. Since W. is derived from the voltage, this

Indicates that the stored energy in either region is the same as for the

interdigital line. Thus, the total stored energy per pitch for the

vane-loaded ladder is exactly twice the value given by Eq. 37, or

W = h Y(e) B2 (69)
s c 1

3. Electric Field Distribution E Enn

Like Ws, the z-directed electric field, Ent is derived from the

voltage. Therefore, the electric field distributions, E E , in
n n

each region are the same as for the interdigital line. For the space

harmonics of interest, they are

4B( 20 sin2 6t(j 2

0 01,11 2 2 in2(

4B 2 2 sin 2 s 2

(E+1E+1) 2 2 tan 0Cos 2 2os (71)
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2III z2 t2an2To 2 IjI

o1 2

IIL 2 s ,I

24 sin 2  (2iff - e

(E E 2 ) =B 2 2 sin 2 0 (732

Those distributions which were formerly edge modes now reach a local

maximum at the center of the circuit (i.e., the true centerline where

0 +$o and 2= -2 ) Those which were formerly center modes now

reach a local minimum there.

4. Final Expressions for Beam Coupling Impedance

The final expressions for K(O) are obtained as before by sub-

stituting the expressions for Vg1 Ws, and E E into Eq. 66 and then

integrating over the beamwidth. The electric field distributions for

all harmonics are symmetrical about the centerline, and therefore it is

necessary to integrate only over that portion of the beam which is in

Region I. Integrating over the entire beam width would not change the

result because the average electric field acting on the electrons would

not change. The final expressions are

K1() = KI K i = 0, +1, -1, -2 (74)

-45 -
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where

KI  1 €o s1n2

0+1 "-2,-1 b Ob Co 2

1 sin (2 b) ±sin[2( o - (752 4b + 4€b  (75)

2
K2 4 sin2(8) L2Z. (76a)6 e2 H(e)Y(e) 2 e1j2

sin 2 [(e )212 (O' 29. J (7b

K2  4 tan2o co o 2 (76b)

K2 4 tan2o Cos L 2 (76c)1 (I - 6)2 H(e)Y(e) 0 2 Or [(k -e)g] 2

2 [ (2yw - P
K2 4 sin 2(0 s' in 2  U L (76d)

- (2 - 2 H(G)Y(6) k21 (2w - (76d)

The values given here for K2 are identical to those given in Chapter II,

except for the factor of two decrease due to the factor of two increase

in Ks .  These expressions are plotted in Figs. 10 and 11 for various

beamwidths.
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IV. DISCUSSION

For completeness, Fletcher's key observations' on the interdigital

line dispersion will be included here. As mentioned, Eqs. 22 and 23

actually describe the space harmonic structure of a single circuit

mode. This is more apparent after an examination of the properties

of Y(B), namely,

Y(8) Y(-9) = Y(9 + n2w) , n = any integer (77a)

Y( + 1) - Y(8 - N) - Y(r - 0) (77b)

Because Y(e + 2w) Y(6), Eqs. 22 at 0 - ° + i are identical to Eqs. 23

at 6 = 80o, except for the trivial nomenclature changes Al * A3 and

A2 + A4 . The two sets of equations merely describe different subsets of

the space harmonics. It also follows from Eq. 77b that (e, 0o ) =

(w/2, 7r/4) is the central point in the dispersion of any interdigital

line, regardless of the exact dimensions, since

Y(8) - Y(8) 1 tan 2  (78)
Y(T + T) 9=w/2 (- e) 0=i1/2 0

which in turn implies

€o " (79)

in the first passband.
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The bandwidth for a given space harmonic is defined as the fre-

quency range over which the phase velocity, vp, for that component does

not vary by more than ±1 percent from its midband value, vo . Fletcher'

claimed that bandwidths of up to ±16 percent can be obtained for the

primary space harmonics with optimum finger separation and thickness and

has provided guidelines for optimizing an interdigital line of a given

pitch. However, computer simulations prove his guidelines to be in

error. This is most likely due to the use of an incorrect admittance

function. Several trials with the same computer simulation led to the

dimensions given in parentheses in Fig. 1 (a rigorous re-examination of

the optimizing guidelines was not undertaken here). The phase veloci-

ties for the components of interest are plotted in Fig. 12. Using the

given definition, the bandwidth for the fundamental forward-wave space

harmonic is approximately ±8 percent at a center frequency of 5.36

GHz. In a microwave amplifier, this would be instantaneous bandwidth.

In comparison, the bandwidth for the n = +1 forward-wave harmonic is ±2

percent at the same center frequency. It is possible to improve the

bandwidth of this component, but that of the fundamental can always be

made greater. Therefore, forward-wave interaction with the fundamental

space harmonic would be preferable.

The beam coupling impedances show why the interdigital line enjoys

considerable popularity as a backward-wave circuit and virtually none as

a forward-wave circuit. Consider first the primary space harmonics.

Figure 4(c) is a plot of K 2 and K.2 It can be seen that these factors
0-1

have a sort of antisymmetry about the center of the band. Initially,

one would expect this behavior to prevail. However, K I offsets K 2 in
0 0
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the final expression. A plot of K and K is shown in Fig. 4(b). This
0 KI

reveals what is intuitively obvious from the electric field distribu-

tions. The fundamental forward-wave harmonic is an edge mode, which

implies it has a null at the center of the circuit. Integrating across

this null produces a small value for K0, particularly at the low end of

the banJ where 0o is small. Conversely, the backward-wave component is

a center mode. It reaches a maximum at the center of the circuit.

Integrating across this maximum gives a much larger value for K. Only

at the high end of the band, as po approaches 7/2, do the two factors

approach equality. In the final expressions, which are plotted in Fig.

(a), these factors combine to make K_1 significantly greater than K0

over most of the band. This figure also shows (K_11Ko) o=1/4 ) 4.5. As

a result, it would be difficult to prevent midband oscillations if the

funJamental forward-wave space harmonic were utilized in a microwave

amplifier.

An alternative would be to use the n = +1 forward-wave harmonic.

In this domain, the factors K2 exhibit the same relative behavior as in

the primary domain. This is shown in Fig. 5(c). However, the func-

tional dependencies of the electric field distributions are reversed

from those discussed above. The forward-wave harmonic is a center mode,

and the backward-wave harmonic is an edge mode. As a result, the rela-

tive behavior of K is reversed, as is shown in Fig. 5(b). The end

result, shown in Fig. 5(a), is that K+I is greater than K-2 over most,

but not all, of the band. This is adequate, however, since a beam

aligned with the forward-wave harmonic would only see the backward-wave

harmonic at midband, where (K_2/K+I) o=1 /4 = 0.22. The price for this

- 60 -



L7
improved behavior is the reduced bandwidth discussed above. Also, the

impedance values are both lower than for their primary domain counter-

parts. This is due mainly to the larger 6 for these components.

The results discussed so far suggest that the interdigital line

would be a desirable amplifier circuit if it were transformed to provide

better access tc the fundamental forward-wave space harmonic, i.e.,

transformed so that the primary space harmonics possessed impedance

behavior similar to that normally displayed by the components in the

secondary domain. This would allow wide-band utilization of the funda-

mental forward-wave harmonic without the threat of oscillation. The

vane-loaded ladder was designed to execute this transformation by propa-

gating two side-by-side interdigital line modes. This preserves the

wide-band dispersion while reversing (from edge to center modes and vice

versa) the electric field distributions for the primary space har-

monics. This in turn would affect the KI values for these components,

thereby bolstering the forward-wave coupling impedance, while decreasing

that of the backward wave.

The results presented in Chapter III show that the new circuit was

not entirely successful in achieving these goals. Consider first the

dispersion. For the most part, the vane-loaded ladder did retain the

dispersion characteristics of the interdigital line, which is not sur-

prising since it does propagate two side-by-side interdigital line

modes. In fact, because a = 0 for the propagating mode, both I, and 12

go to zeru where the centerline meets the rungs. This indicates that

the propagating mode would be unchanged if the rungs were cut at the

centerline line and a center rail were incorporated into the circuit,
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i.e., if the vane-loaded ladder were constructed exactly of two adjacent

interdigital lines. However, the circuit also possesses additional

features which are undesirable. The first of these is the midband

ladder resonance. It is unclear if the beam would strongly couple to

this resonance in the presence of the propagating mode. However,

Walling2 has shown that the effect of the finger-end capacitances on the

interdigital line is to create a small stopband at the center of the

pasband. If such a stopband also exists here, and it is logical to

conclude that it would, the likelihood of strong coupling to this reso-

nance is much greater. If this is so, regardless of the impedance

behavior, this would essentially be a return to the case of the inter-

digital line, where a more strongly coupled component inhibited inter-

action with the fundamental forward-wave space harmonic. Furthermore,

the resonance exists in all domains, so interaction with the n = +1

forward-wave harmonic would be equally affected. The second feature is

that the assumption of zero voltage at the center of the vanes would

most likely require the link to the backwall to be shorter than that

used here. This would reduce the bandwidth due to the increased back-

wall loading. In short, the new circuit does not accurately preserve

the interdigital line dispersion.

The circuit also fails to realize the goal of reversing the imped-

ance behavior of the primary space harmonics through alterations of the

factors K1  This is understandable after examining Figs. 13a-13c,o,-I"

which shows the sin 2 and cos 2 envelopes of the electric field distri-

butions at three points across the band. This figure foreshadows the

result that in altering the factor K , the form of the electric field
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distribution will play a secondary role to the magnitudes involved.

Although not a true center mode (maximum value in the center, minimum

value at the edges), the modulation for the fundamental forward-wave

space harmonic now reaches a local maximum at the centerline. Simi-

larly, the m = -1 backward-wave distribution now reaches a local minimum

at the centerline although it is not a true edge mode. However,

although somewhat displaced, the former is still essentially a sin 2

distribution, and the latter is essentially a cos 2 distribution.

Averaging across the former produces a smaller value than for the

latter. This is shown in Fig. 10(d), which shows K for various
0,-i

beamwidths. For the cases 4b = 40 (beam spans the entire width of the

circuit) and 0b = 2 0 0 (beam stretches from the center of Region I to the

center of Region II), KI is unchanged from its interdigital line

value. This is because the electric field distributions, both here and

for the interdigital line, have a half-period equal to . Any integra-

tion over a multiple of this half-period yields the same result, indi-

cating that the average field acting on the electrons has not changed.

Only for the case 0b < 009 and only then at the high end of the band

where sin ¢o > cos 0o, do the new electric field distributions result in

an increase in K at the expense of K. Even so, this limited effect
0

is not enough to produce the desired results. For 4b = 00 /4, the ratio

(K_ /Ko) o=7/4 = 3.13 is still large.

The results are similar for the secondary domain, as shown in

Figs. 11a-11e. As before, for 0b = 40 or *b = 2€o0 K1 is unchanged

from the case of the interdigital line. However, since the electric

field modulations in the domain 1 < 0/n < 2 are the reverse of those in
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the primary domain, b < o improves K 2 at the expense of K 1  This isb -2 +I"

a step in the wrong direction. In addition, the increase stored energy

on the circuit further reduces the impedance values. Thus, in this

domain, the new circuit cannot improve upon the interdigital line under

any circumstances.

It must be conceded that the vane-loaded ladder is not a viable

candidate for use in microwave amplifiers. The results shown here

indicate that an unmodified interdigital line would be a better choice

when used in a backward-wave amplifier. Such an amplifier would require

a voltage tuning ciruit in the system, but it would possess reasonable

gain and bandwidth. An even better choice, as mentioned in the intro-

duction, is the stub-supported meander line. While by nature a narrow-

band circuit, it can be ridge-loaded for improved bandwidth8 when accom-

panied by a tuning ciruit. Computer simulations of such a circuit 9

show its beam coupling impedance to be slightly higher (for the most

part) than that for the interdigital line. Furthermore, it offers the

simple advantage that cooling fluids can be run directly through the

circuit, giving it a greater power-handling capability. These latter

two factors permit the circuit to be used in distributed emission

devices as well as in injected beam devices. Like the stub-supported

meander line, most typical crossed-field amplifier (CFA) slow-wave

circuits enjoy these advantages and would therefore be preferred over

both the interdigital line and its derivative, the vane-loaded ladder.
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V. CONCLUSION

This thesis has investigated the dispersion and beam coupling

impedance of the vane-loaded ladder slow-wave circuit. The vane-loaded

ladder is a circuit conceived as a consolidation of two side-by-side

interdigital lines. This configuration was designed to preserve the

dispersion characteristics of the Interdigital line, while improving the

accessibility of the fundamental forward-wave space harmonic. Such a

circuit would serve as a wide-band alternative to the typically narrow-

band slow-wave circuits, such as the stub-supported meander line, which

are currently employed in crossed-field amplifiers (CFA's).

The results showed that the vane-loaded ladder was not successful

in achieving the desired goals. From the standpoint of dispersion, its

propagating mode is identical to that of the interdigital line. How-

ever, it also possesses the additional obstacle of a midband ladder

resonance, which, it is believed, would be strongly coupled to a beam

aligned with the fundamental forward-wave space harmonic. Furthermore,

it is anticipated that the nature of the circuit would require signifi-

cant backwall loading, which in turn would further reduce the bandwidth.

It was also discovered that the impedance behavior of the circuit

was not significantly different from that of the interdigital line. In

the primary domain, the backward-wave component still dominates and

therefore carries the threat of unwanted oscillations. Only under

limited circumstances do the altered electric field distributions of the

new circuit help to alleviate this problem; even so, the changes induced

are not significant. Similar results hold true for the secondary
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domain. Overall, It is conceded that typical CFA circuits, such as the

stub-supported meander line, enjoy several advantages over the vane-

loaded ladder and the interdigital line from which it was derived.
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APPENDIX A

LIST OF SYMBOLS

A1-A4  Voltage coefficients for interdigital line

B -B8  Voltage coefficients for vane-loaded ladder

b Half-width of strip beam

c Free-space speed of light

d Thickness of circuit elements

En Z-directed electric field for nth space harmonic

h Half (quarter)-length of interdigital (vane-loaded ladder)
elements

I Circuit current

K Beam coupling impedance

KI  Beam integration factor

K2  Composite of other impedance factors

9 Pitch of circuit

L Period of circuit

mo  Index for circuit elements

m Index for backward-wave space harmonics

n Index for forward-wave space harmonics

p Width of circuit elements

Pta Time-averaged power flow on circuit

q Distance between circuit elements

v g Group velocity of all space harmonics

vp Phase velocity for a given space harmonic

vo  Midband phase velocity for a given space harmonic
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V Circuit voltage

w Radian frequency

Wb Distance to backwall

ws  Distance to sole

Ws  Stored energy per pitch

Y Admittance of circuit

YO Admittance of free space

CI q/p

a=O, Propagating modes

n  Propagation constant for nth space harmonic

8 Phase shift per pitch

Normalized distance

o Normalized h

r (-1)
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